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The job of a researcher is to explain the phenomenon that he or she is seeking to
understand. To do this requires the accumulation of facts. These facts are then interpreted
to arrive at explanations. However, individual researchers often interpret facts in different
ways and arrive at disparate explanations. In her book, Making Sense of Life, Evelyn Fox
Keller (2002) outlines various approaches used by developmental biologists to understand
the animate systems we call life. In this review, I note several parallels between biology
and behavior analysis in how facts are discovered, what is an acceptable interpretation of

data, and how explanations are arrived at.
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In the settings in which I then worked
[theoretical physics], the relation be-
tween theory and experimental work
was a familiar one. The primary func-
tion of experiment was to test theoret-
ical models. . . . Only later, while work-
ing as a mathematical biologist and
teaching a course to medical students
on the uses of mathematical methods
in biology, did I get my first glimpse of
a more fundamental divide. ... After
introducing a biological problem de-
scribed in terms of eleven variables, I
used dimensional analysis to show that
the relations among only three of these
variables needed to be studied empiri-
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cally; all other relations could be in-
ferred logically. The students, however,
were clearly unhappy: “But you haven’t
done the experiments,” they com-
plained. “So how can you know? How
can you be sure?” That question
stopped me in my tracks, and I have
been thinking about it ever since. (Kel-
ler, 2002, pp. viii—ix)

In Making Sense of Life, Keller’s goal is to
understand how researchers explain the phe-
nomena they study. This includes what con-
stitutes elements of an explanation and what
elements do not contribute to explanation.
In doing so, the book also focuses on how
certain assumptions (often implicitly adopt-
ed by a research community) influence the
types of data that researchers collect and
how they interpret that information in pur-
suit of explanations. Keller avoids explaining
explanation in a philosophical sense and, in-
stead, focuses on the functions that various
explanations serve for researchers.

To accomplish this goal, Keller surveys
the use of explanation in developmental bi-
ology during the 20th century. Developmen-
tal biology can be described as the study of

how organisms come to be. Its focus is on
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the mechanisms of how animals and plants
emerge from single cells through cell differ-
entiation and specialization into intact, ma-
ture organisms. It is now known that these
processes are controlled by cellular and ge-
netic events that occur within individual
cells and interactions among cells (Watson,
2003). However, understanding the biolog-
ical development of organisms has taken a
number of twists and turns during the past
100 years on its way to its present status.
This sojourn has involved researchers con-
ducting experiments and interpreting their
results. Many of these efforts have led to
fruitful discoveries that have added to the
understanding of plant and animal biology;
others have borne lesser fruit or not survived
the test of time.

A treatise on explanation in developmen-
tal biology should be of interest to behavior
analysts for at least four reasons. First, de-
velopmental biology has rapidly developed
during the last century, moving from no-
tions based in vitalism (biologists’ version of
mentalism) to the expression of genes to
guide the development of organisms (Col-
lins, Green, Guttmacher, & Guyer, 2003).
Second, biologists have had to grapple with
what constitutes an adequate explanation,
including what evidence is included and ex-
cluded. Third, because Keller has experience
in both theoretical physics and developmen-
tal biology, she has a unique perspective on
deductive versus inductive, top-down versus
bottom-up, and theory-driven versus exper-
iment-driven approaches to explanation. Fi-
nally, there are several parallels between how
developmental biologists approach their sub-
ject matter and how behavior analysts ap-
proach theirs.

In this review, I will discuss a selected set
of topics from Keller’s book. Themes include
(a) the role of analogy and structural simi-
larity as bases for explanation and (b) quan-
titative models versus experimental analyses
of biological systems. These areas will be dis-
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cussed within the context of how they have
emerged in developmental biology; but, in
addition, I will attempt to draw parallels
with similar issues of interest in behavior
analysis. First, however, a discussion of some
key terms is necessary.

FACTS, INTERPRETATIONS,
AND EXPLANATIONS

Keller’s book is about explanation, but her
exposition of how researchers arrive at ex-
planations is through their conducting re-
search and how they interpret their findings.
This approach to explanation is a pragmatic
one and fits well with behavior analysts’ ten-
dencies toward exploring the function of
verbal constructs rather than attempting to
structurally define them (Hineline, 1990).
Many philosophers of science have dis-
cussed, defined, and debated the nature of
explanation, only to continue this process
without arriving at a definitive meaning for
the term (e.g., Knorr-Cetina, 1999; Mulkay,
1991). Breaking with current philosophical
approaches to constructivist interpretations
of science, Keller adopts an inductive ap-
proach: How do scientists use explanation to
pursue answers to the questions that interest
them? Research is, after all, a systematic ap-
proach to answering questions (Sidman,
1960). So what we have, in essence, is a
functional analysis (albeit a nonexperimental
one) of how researchers arrive at explana-
tions.

Making Sense of Life explores explanations
by observing how they are derived from facts
via interpretations of data. So, to understand
how researchers use explanation, we need to
understand what constitutes the facts and in-
terpretations they use to arrive at explana-
tions. To do so, we need to have working
definitions of these terms.

Use of the word fact will refer to replicable
experimental findings that establish some
type of functional relation between indepen-
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dent and dependent variables (Kennedy, in
press). In this sense, a fact is a reproducible
experimental result. Each time a researcher
does X under certain conditions, he or she
produces Y. If he or she does X" under the
same conditions, he or she produces Y.
Such relations are demonstrable facts. One
can argue about what the facts mean, but
one cannot deny that they occur and the
specific conditions under which they are
produced. There are, of course, facts that are
not experimentally derived (e.g., I live on
Cedar Lane in Nashville, Tennessee, my of-
fice is located at the corner of Edgehill and
21st Avenues in the same city, and they are
approximately 2 miles apart). However, the
focus of Keller’s book and, hence, this re-
view, is on experimentally derived knowl-
edge. So, with this caveat, we will refer in
this review to repeatable experimental out-
comes as facts.

Interpretation is a necessary step between
facts and explanations and plays a central
role in Keller’s discussion of research prac-
tices in developmental biology. Interpretation
will refer to conclusions drawn from facts.
That is, given a particular experimental find-
ing, what conclusion does Researcher A
draw from the results versus the conclusions
arrived at by Researcher B or C. As we will
see in the following sections, researchers of-
ten accept particular experimental findings
as facts, but offer substantively different in-
terpretations of what can be drawn from the
facts.

Explanation will refer to verbal statements
about how facts and their interpretations are
used to identify the controlling variables of
a particular phenomenon (Skinner, 1974, p.
156). Explanations are often considered an
endpoint for exploring a particular set of
functional relations. Once a series of func-
tional relations and interpretations of those
relations are offered, an explanation is a
statement of causes. To explain something is
to understand why it occurs.
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The definitions of fact, interpretation,
and explanation just offered may be debated
for their adequacy, but my interest in their
usage is practical. The more pressing issue is
that researchers should contemplate these
ideas because they influence their compre-
hension of what they study. Facts may be
facts, but as will be illustrated later in this
review, different interpretations can be of-
fered for the same facts. Similarly, we will
see that not all explanations satisfactorily de-
scribe the causes of a phenomenon. Indeed,
even those facts, interpretations, and expla-
nations that can withstand critical scrutiny
may not endure as a scientific field evolves.
These observations beget certain questions
that researchers often do not explicitly ask
themselves or discuss with others. What is
an explanation? How do we know when
something has been explained? What results
from explaining something? And, how do
these issues shape our understanding of a
particular subject matter and influence our
future experimental activities?

SYNTHETIC BIOLOGY:
MORPHOLOGY AS ANALOGY

The goal of biology is to explain what life
is (Lamarck, 1809/1984). However, a defin-
itive answer to this question proved to be
elusive to researchers in the 19th century.
Before biologists began to address this ques-
tion scientifically, an alternative explanation
had been advanced that was accepted by
most people: vitalism. When biology
emerged as a field, the prevalent belief was
that living organisms possess an inner force
that gives them the properties of life. It is
important to note that this inner force had
no physical existence; it was metaphysical.

One of vitalism’s strengths was that it ex-
plained a wide range of biological phenom-
ena, from why animals were animate to how
cells divide. Vitalism was also intuitive; it
was easily understood, and it explained
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events in the everyday world (Chew & Lau-
bilcher, 2003). This characteristic of vitalism
makes it a “rhetorical argument” (Cohen &
Nagel, 1962, p. 19). When using rhetoric,
an individual is successful when he or she
produces an argument that provides the au-
dience with a feeling of certainty, referred to
as unquestionable assurance. Vitalism provid-
ed many people with an assuring and acces-
sible account of animate processes.

Vitalism’s greatest strength, however, was
that it could not be easily refuted. Because
vitalism was a metaphysical explanation,
demonstrating it did not exist amounted to
proving a negative. Proving that an entity
does not exist, when in fact it does not exist,
requires a complex logical argument. Proving
a negative entails refuting an argument
whose claims cannot be proven wrong. This
type of argument shifts the burden of proof
from the person making the claim (e.g., vi-
talism is how life works) to individuals who
are critical of the claim (e.g., vitalism is a
specious explanation).

An example of the complexity of proving
a negative is the task of convincingly dem-
onstrating to someone that angels do not ex-
ist. The first step should be to show that
under all possible conditions no angels can
be found. However, the primary problem
with proving a negative such as “angels do
not exist” is that it is an unprovable state-
ment in that it cannot be exhaustively dem-
onstrated that angels do not exist (e.g., how
does one test the proposition, “angels only
live in heaven”). Proving a negative primarily
rests with the logic that the counterhypoth-
esis to “angels do not exist” has never been
demonstrated (i.e., no credible angel sight-
ings have been reported). The argument for
rejecting the existence of angels, then, be-
comes primarily a probabilistic one. When-
ever we look for an angel, we never find one
(or Martians, Bigfoot, or the Loch Ness
Monster). At some point the credibility of
the counterhypothesis (i.e., “angels do exist”)
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becomes implausible, and the alternative hy-
pothesis (i.e., “angels do not exist”) becomes
the only intellectually rational answer.

There is, however, another way of dem-
onstrating that vitalism is an inadequate ex-
planation. If someone could identify the ma-
terial mechanisms responsible for life, then
metaphysical notions such as vitalism would
be superfluous. Such a strategy is often re-
terred to as mechanism, materialism, or re-
ductionism by philosophers of science, be-
cause they are based on the interaction of
material events that provide a causal expla-
nation for the larger system. An early advo-
cate of discovering alternatives to vitalism
was Jacque Loeb (1912/1964), a physicist
and biologist who had a major influence on
such notable 20th century scientists as Wil-
liam Crozier and B. E. Skinner (Bjork, 1993;
Boakes, 1984).

A primary means, advocated by Loeb, for
discovering a mechanistic explanation for
living organisms was the production of life
from artificial matter. If a researcher could
produce a living organism from inorganic
materials, then a metaphysical force was un-
necessary to create life. All that was required
were the necessary ingredients in the form
of certain molecules being combined under
certain conditions.

Aprtificial Organisms

Several biologists in the early 20th cen-
tury took up this challenge to refute vitalism
and find an explanation for how living or-
ganisms develop. The most notable of these
was Stéphane Leduc (1912), a French biol-
ogist who focused his career on creating
what he referred to as artificial organisms.
This approach has since become known as
synthetic biology, with the term synthetic re-
ferring to the combining of chemical ele-
ments to produce a distinctly different sub-
stance. The goal of synthetic biology was to
identify the physical mechanisms that gave
rise to life.
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Figure 1. Reprint of one of Leduc’s morphological
forms (Leduc, 1912, Figure 40).

What Leduc (1912) did was combine sev-
eral readily available chemicals in a fluid me-
dium and observe what emerged. The results
were astounding. By combining calcium and
nitrate in a solution of sodium silicate, Le-
duc could produce growths closely resem-
bling fungi (see Figure 1). By altering the
types of chemicals used, he could produce
osmotic growths resembling not just fungi,
but a variety of plants (e.g., ferns) and sea
animals (e.g., sea-urchins). These osmotic
growths not only resembled living organ-
isms, but they grew over time and appeared
to produce new growths akin to reproduc-
tion. Adding to the impressiveness of Le-
duc’s discovery, not only was he able to rep-
licate entire organisms, but he could also
produce results that mimicked intracellular
processes. For example, Leduc could simu-
late some of the physical features involved in
cell division (e.g., mitosis). As a collection,
these findings provided a compelling case
that osmotic growths could be produced and
resembled a range of biological phenomena.

There is no doubt that what Leduc
(1912) created was real, in the sense that his
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osmotic growths could be replicated in other
laboratories by other researchers (i.e., his
findings were facts). What he produced was
not quackery. What is at issue, however, is
how he interpreted these data. For Leduc,
morphological analogy was sufficient to
claim that he had produced artificial life. Be-
cause the osmotic forms looked (and in
some cases acted) like living organisms, in
Leduc’s view he had found the conditions
necessary to create organic life.

This interpretation of the data led to an
important logical error on the part of Leduc
(1912). Although many of his contemporar-
ies agreed that he had created physical struc-
tures that resembled organic life, they
viewed the interesting forms as imitations.
Critics noted that osmotic growths were no
more living animals than marble statues of
people were humans (e.g., Macfarlane,
1918). Although Leduc produced physical
structures that morphologically resembled
animate life (in form and action), the struc-
tures themselves were not alive and could
not produce living organisms. That is, they
were only physical analogies.

Leduc (1912), however, took his obser-
vations a step further. He noted that he had
identified the necessary material components
to produce life, thus providing an alternative
to vitalist theories and establishing the basis
for how life is created. As quoted by Keller,
Leduc noted,

When we see under our own eyes the
cells of calcium become organized, de-
velop and grow in close imitation of
the forms of life, we cannot doubt that
such a transformation has often oc-
curred in the past history of our planet,
and the conviction becomes irresistible
that osmosis has played a predominant
role in the history of earth and its in-
habitants. (Keller, p. 28)

These conclusions about his data led Le-
duc (1912) to confuse producing artificial
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life and artificially producing life. The for-
mer creates “organisms’ that physically re-
semble plants and animals; the latter creates
living organisms from physical materials. In
this instance, the overinterpretation of data
led Leduc to an explanation of the basis for
life that was untenable. Although Leduc’s
work received a great deal of attention in the
early 20th century, within a few decades ref-
erence to his work stopped. Therefore, a de-
finitive refutation of vitalism would have to
wait until the emergence of molecular biol-
ogy (discussed later in this review).

Cellular Automata

Lest the reader think such issues are only
historical, Keller points out that contempo-
rary research in evolutionary biology may
parallel some of the interpretative issues
raised by synthetic biology. In particular,
work on computer simulations of biological
phenomena, often referred to as cellular au-
tomata, may be testing the limits of mor-
phological analogy (Wolfram, 2002). Using
cellular automata, researchers can simulate
biological dynamics in an attempt to better
understand how animate systems work at the
cellular or organismic level. Thus, at the cel-
lular level, cellular automata are not the liv-
ing cells comprising living tissue; they are
simulated cells of simulated tissue. In this
regard they are not unlike simulations of
neural networks that do not involve actual
neurons and glia but are computer simula-
tions of interactions among simulated brain
cells. The use of computer simulations, ac-
cording to Keller, emerged in the 1980s in
the physical sciences as a means of modeling
complex systems (such as thermonuclear
processes) and is viewed as a productive ap-
proach to understanding such phenomena.

Building on the success of simulations in
other areas, some researchers, most visibly
Langton (1997), have offered a similar ap-
proach to understanding biological systems.
Using the concept of cellular automata, re-
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searchers have attempted to study complex
biological processes such as species differen-
tiation within a population. As used by
Langton, cellular automata refer not to in-
dividual cells that comprise some type of tis-
sue or organ but to individual organisms
that can be defined to act or react in specific
ways via computer software. That is, a cel-
lular automaton represents an individual
member of a species. Therefore, a cellular
automaton may be defined as an individual
animal from a species that has a genotype
(ie., its individual genetic makeup) that is
expressed as a specific phenotype (i.e., phys-
iological and behavioral characteristics). A
simulation then proceeds across time in
which individual automata produce off-
spring that have varied genotypes that lead
to differentiation among phenotypes, poten-
tially altering the probability of successful re-
production by an individual unit (i.e., pass-
ing on its genotype to the successive gener-
ation of automata). By conducting such sim-
ulations, researchers have attempted to study
evolutionary processes that are not accessible
from fossil records or real-time observations
(see Schellnhuber, 1999).

Using such simulations, researchers can
vary parameters such as survival and repro-
duction probabilities to analyze possible evo-
lutionary processes. Interestingly, many re-
searchers in this area have taken an interpre-
tive step beyond their data that might be
viewed as similar to that of Leducs (1912)
work on synthetic biology. Simulations of
evolutionary processes are algorithms written
into computer programs. However, some re-
searchers have taken this process and added
a layer of interpretation that parallels evo-
lutionary biology. For example, Ray (1998)
uses terms such as genes, genetic crossover, en-
ergy, and reproduction to refer to specific var-
iables in a simulation algorithm. This ap-
proach is referred to as A-Life, alluding to
artificial life. An example might be describ-
ing the formula X plus Y divided by Z as
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organismic energy (X) plus reproductive fit-
ness (Y) divided by food availability (2).
When researchers who use these simulations
discuss their work, they use biological terms
to describe not only their results but also the
variables that contribute to their findings.
This interpretation of data is similar to
synthetic biology (see previous section on
Artificial Organisms) in that researchers are
imposing a judgment about the meaningful-
ness of their findings that is beyond the ac-
tual facts. However, in the use of cellular
automata in evolutionary biology, morpho-
logical analogy is primarily linguistic rather
than visual (Hayles, 1996). By describing
discrete variables from a computer algorithm
using terms from evolutionary biology, such
research imparts on itself a level of legiti-
macy that is interpretative, not factual. Such
linguistic practices have the enticing sound
of being actual analyses of evolutionary pro-
cesses, but the character strings of the algo-
rithm could just as well be interpreted as
characterizing a hurricane system or a nucle-
ar reaction. Whether the practices of re-
searchers of A-Life depart from synthetic bi-
ology, in that it becomes scientifically pro-
ductive, awaits to be seen (Bernstein, 2003).

Behavior-Analytic Analogues

A major theme in Keller’s book is that all
researchers make interpretations regarding
their findings. One cannot attempt to solve
meaningful problems without interpreting
findings to arrive at explanations. The issue
for Keller is when are such interpretations
scientifically productive. At this point it
might be useful to discuss morphological
analogy in the context of behavior—environ-
ment relations studied by behavior analysts.
I will offer two examples: facilitated com-
munication and animal models.

The finding that people with autism can
type elaborate verbal statements and answer
complex questions when another person
without intellectual disabilities physically
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supports their fingers and hands is not con-
troversial. This outcome has been replicated
enough times that a reasonable person
would accept it as fact. What is highly con-
troversial is how this fact is interpreted to
arrive at an explanation of the phenomenon.

One perspective, advanced by advocates
of facilitated communication, suggests that
the communication arises from the person
with autism and is due to a profound apraxia
that is overcome by the assistance of another
person (Biklen, 1990). An alternative per-
spective suggests that the communications
that arise from this technique are from the
individual who provides the assistance, not
the person with autism (Green & Shane,
1994). Both of these interpretations arise
from the same data but draw profoundly dif-
ferent conclusions about the nature of events
being explained.

The former perspective is based on the
observation that the individual with autism,
not the person facilitating his actions, gen-
erates the behavior. In essence, supporters of
this interpretation of the data are basing
their conclusions on the morphology of
what is produced (e.g., written words), sim-
ilar to the morphological analogies drawn by
researchers in synthetic biology. The latter
perspective is based on additional experi-
mental evidence that controls for possible in-
fluences from the people involved in pro-
ducing the communication. This experimen-
tal approach suggests that the facilitator is
the source of the communication.

It should be noted that biology is largely
an empirical discipline, much like behavior
analysis. Biologists and behavior analysts are
taught to trust their data because they are
based on experimental analyses of what is
trying to be understood. The procedures and
methods used to generate these data require
intense scrutiny, but what results from ex-
perimentation is considered veridical. From
this perspective, the discrepancies in inter-
pretation between ethnographers (e.g., Bik-



546

len, 1990) and behavior analysts (e.g., Green
& Shane, 1994) may be based on how peo-
ple in various disciplines are taught to inter-
pret data and draw conclusions to explain
what they are trying to understand.

Another example of morphological anal-
ogy that has become a foundation of bio-
medical research is the use of animal models.
Animal models use analogue situations for a
problem and analyze the model to reveal
processes that might improve human health
and behavior. This logic is not new to be-
havior analysis. In the mid-20th century,
Skinner conducted a series of experiments
that modeled issues relevant to people in
their everyday lives using pigeons and rats as
subjects.

One example relevant to human behavior
that Estes and Skinner (1941) analyzed was
anxiety. Rats were taught to press a lever on
an intermittent schedule of food reinforce-
ment that produced a continuous, moderate
rate of responding. Over this baseline a sig-
naled positive punishment contingency was
established. At various intervals a tone
sounded, followed a few minutes later by an
inescapable shock. After the shock was de-
livered, the tone was terminated. Through-
out this process, the intermittent schedule of
food reinforcement was operative.

The experimental results demonstrated
that rats would press the lever for food in a
pattern typical of intermittent reinforcement
schedules, but as soon as the tone started,
responding ceased. As soon as the shock oc-
curred and the tone stopped, the animal re-
sumed its lever pressing for food reinforce-
ment. There was no reason for the rat to
stop lever pressing when the tone began, but
the tone was associated with a noxious stim-
ulus that suppressed other, more functionally
relevant, operants. This effect on behavior
was interpreted by Estes and Skinner (1941)
as being related to human behaviors that so-
ciety tends to label as anxiety.

Behavior analysts may not view these ex-
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perimental extrapolations to human behav-
ior as terribly contentious, but that is be-
cause of the training they receive. Behavior
analysts are taught that laboratory analogues
of human situations are a viable, and often
necessary, approach to understanding hu-
man behavior. Similar strategies are routinely
used by biologists, for example, by studying
Drosophila to understand sleep regulation
(e.g., Shaw, Cirelli, Greenspan, & Tononi,
2000). Others have not been so sanguine
about animal models. Skinner, during his
life, was often attacked by critics, not for his
experiments, but because of his interpreta-
tion of his experimental findings. Skinner
used his laboratory findings to explain why
people gambled, made love, or fought (e.g.,
1953). Many people, both laypersons and
scientists, found such extrapolations to be
inappropriate and troubling (Smith &
Woodward, 1996).

To take morphological analogy one step
further, consider the case of animal models
that look for functional similarities in hu-
mans and nonhumans in often disparate to-
pographies of behavior. A good example of
this is the Porsolt swim test as an animal
model of human depression (Porsolt, 1979).
The Porsolt swim test uses animals, such as
mice, that are placed in water and their
swimming is observed. A primary dependent
variable in this test is the length of time the
animal swims before it stops. In general, the
longer the animal swims the less depressed
it is considered to be. On the surface this
sounds implausible and even a litde silly.
However, when psychotropic drugs that are
known to improve depression in people are
administered in these tests, the animals swim
longer. In fact, many drugs used to treat de-
pression (e.g., selective serotonin reuptake
inhibitors like fluoxetine) were initially
screened using tests like the Porsolt swim
test. It has also been useful in identifying the
subtypes of serotonin receptors involved in
the drug action of antidepressants (Skolnick,
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1999). Whether animals that stop swim-
ming are depressed is secondary to the fact
that it is a productive experimental model of
human depression.

My point in these various examples has
been to demonstrate how relative the appro-
priateness of morphological analogy is. Like
most concepts in research, the viability of
morphological analogy depends on how it is
used in a particular experimental context.
Leduc’s (1912) overinterpretation of his data
in an effort to refute vitalism and arrive at a
materialist explanation of biological devel-
opment was a failure. Computer simulations
of A-Life may, or may not, become produc-
tive scientific strategies. Facilitated commu-
nication has proven to be something very
different from what was originally claimed.
Animal models of human behavior have a
long track record of success, despite some-
times being counterintuitive. All of these ex-
amples have used morphological analogy in
one way or another to interpret data and
arrive at an explanation for a particular phe-
nomenon, with varying degrees of success.

MATHEMATICAL BIOLOGY:
QUANTITATIVE MODELING VERSUS
EXPERIMENTAL ANALYSIS

The search for an alternative to vitalism
took a new direction in the mid-20th cen-
tury. Rather than focusing on creating life
from inanimate materials, researchers fo-
cused on the molecular building blocks of
life (Watson, 2003). The key event in this
research was the discovery of the structure
of deoxyribose nucleic acid (DNA) by Wat-
son and Crick (1953). This discovery shifted
the focus of biologists toward the study of
DNA and away from how to create life. This
marked a fundamental shift in how biolo-
gists conceptualized the problems they were
attempting to solve.

The question biologists began to focus on
was how sequences of DNA regulated the
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activity of individual cells. This focus was
simultaneously cellular and genetic. It was
cellular in that researchers began focusing on
how cells developed, formed into certain
structures (e.g., the central nervous system),
and regulated their activity through intra-
and extracellular processes. It was genetic in
that the composition of chromosomes in
terms of DNA sequences were the molecular
mechanisms that determine cellular process-
es. The expression of certain genes within
the nucleus was the regulatory mechanism
for cells and life.

We now know that biologists interested in
how cells develop to form living organisms
need to understand how gene expression reg-
ulates cell division, migration, specialization,
and homeostasis (de Villis & Carpenter,
1999). However, prior to the discovery of
DNA, biologists were already interested in
understanding development in ways that de-
parted substantially from approaches such as
synthetic biology. One such approach was
the mathematical modeling of biological
processes that emerged in the 1930s.

Mathematical Explanations

In Keller’s history of developmental biol-
ogy, she identifies Rashevsky (1934) as the
key person in the establishment of what was
then referred to as mathematical biophysics
and now is referred to as mathematical biol-
0gy. Rashevsky’s goal was to establish a the-
oretical approach to biology that was similar
to theoretical physics. Rachevsky was a phys-
icist by training and, hence, was very famil-
iar with using quantitative methods to mod-
el and explain phenomena. Before becoming
interested in biology, he focused on the on-
set of instability in liquid droplets.

For theoretical physicists, much of what
constitutes explanation is derived from the
ability to quantitatively model a particular
phenomenon. If the equation adequately de-
scribes certain events, then a formal expla-
nation of the phenomenon has been
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achieved. Accordingly, Keller notes, “causal
responsibility is assigned not to particular
material entities or events but rather to a set
of interaction dynamics” (pp. 101-102). An
example of this approach to explanation in
mathematical biology is Turing’s (1952) de-
velopment of a mathematical solution to
morphogenesis.

The question Turing (1952) was interest-
ed in was how cells interact to form struc-
tures (e.g., embryogenesis or the spots on a
leopard). To do this, he identified an ideal-
ized theoretical system that contained the
minimum number of variables necessary to
produce morphogenic patterns. The details
of the resulting differential equations are not
important in this context, but their role in
arriving at an explanation is. Turing’s math-
ematical solution to morphogenesis used an
equation that could be used to produce
shapes similar to cell assemblages observed
in nature. For Turing, this mathematical
model explained morphogenesis. As Keller
notes, in “Turing’s effort, we are presented
with a veritable caricature of the mathemat-

ical physicist” (p. 95).

Explanatory Satisfaction

The question is, “Is this an adequate ex-
planation?” The answer to that question de-
pends on what criteria one uses to judge a
scientific explanation as adequate. To a
mathematical biologist or theoretical physi-
cist, Turing’s (1952) solution is eloquent and
robust. To an experimental biologist, Tur-
ing’s solution is an idealization that may or
may not exist as a fact. Which of these the
reader believes is preferable depends on his
or her own learning history.

Although biologists study a range of phe-
nomena and use a variety of methods, one
thing is clear: They learn about their area of
interest through experimentation. Ask a bi-
ologist what he or she does and he or she
will very likely describe the experiments the
research team is conducting. As the intro-
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ductory quote in this review suggests, most
people interested in biology are predisposed
by training and experience to conduct ex-
periments to understand biological phenom-
ena.

A researcher can develop an eloquent hy-
pothesis about how a biological process
functions, but it is only his or her best guess
about how nature works. To paraphrase a
statement attributed to the astronomer Sid-
ney van den Bergh about hypotheses and ex-
perimentation, “Our job is to listen to what
nature is telling us and not impose our own
aesthetics.” A researcher’s prediction regard-
ing the outcome of an experiment may be
correct, partially correct, or simply wrong.
However, for an experimentalist, the primary
means of finding out the viability of a hy-
pothesis, and far more important, the actual
results, is by conducting an experimental

analysis. As noted by Keller,

Can, for example, mere arm-chair the-
orizing—work that requires only paper
and pencil and not the manual labor of
actual experiment—serve as an ade-
quate basis for epistemological entitle-
ment? The judgment of most experi-
mental biologists of the past century
(and especially of those working in the
United States) has been a decisive no.

(p- 77)

This bias toward experimentation among
biologists, as well as behavior analysts, is pri-
marily an issue of what constitutes a fact.
Where do facts come from? Can someone
just state an assertion and consider it a fact?
In some areas of science, particularly theo-
retical physics, the answer to this latter ques-
tion is a qualified yes. However, in the his-
tory of biology, facts are derived from ex-
periments, not from armchair analysis. Ex-
perimental facts represent how nature works.
Whether we could have predicted the re-
sults, or even whether we adequately under-
stand them, is an issue of lesser importance.
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Table 1

E. B. Wilson’s (1934) “Axioms and Platitudes”
Regarding Mathematical Biology

1. Science need not be mathematical.

2. Simply because a subject is mathematical it need
not therefore be scientific.

3. Empirical curve fitting may be without other than
classificatory significance.

4. Growth of an individual should not be confused
with the growth of an aggregate (or average) of
individuals.

5. Different aspects of the individual, or of the aver-
age, may have different types of growth curves.

This disposition toward gathering facts
through experimentation has made biolo-
gists resistant to approaches based on math-
ematical modeling.

This bias toward experimentation was
very evident in the reception that Rachev-
sky’s work received from biologists of his
day. When Rachevsky (1934) presented his
ideas at the Cold Spring Harbor Symposia
for Quantitative Biology, one of his fellow
speakers (Wilson, 1934) commented on the
limitations of mathematical modeling in bi-
ology. Table 1 shows a summary of Wilson’s
concerns about the ability of mathematical
modeling to render meaningful conclusions
about biological phenomena. The first con-
cern is that quantitative models describe ex-
isting structures but do not explain how they
come into existence; hence, Statements 1
through 3 in Table 1 regarding the relation
between science and math. Wilson’s second
area of concern had to do with population
genetics and the description of individual el-
ements by group averages (Table 1, State-
ments 4 and 5) (see also Sidman, 1952).
Wilson viewed Rachevsky’s efforts as too re-
mote from what he was trying to explain.

For Wilson (1934), biology was an in-
ductive, empirical discipline, not a deduc-
tive, theory-driven endeavor. Keller describes
this lack of affinity among experimental bi-
ologists for mathematical modeling by using
the concept of explanatory satisfaction. An
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“explanation is ... to provide a causal ac-
count of a phenomenon . . . the expectation
of a causal account is that it will identify the
agent or event responsible for the effect” (p.
101). For a theoretical physicist, explana-
tions can be analogical. That is, mathemat-
ical models can be used to describe the nec-
essary conditions for an effect via equations,
even though no demonstration using natu-
rally occurring events has occurred. Accord-
ing to Keller, however, this type of expla-
nation is unsatisfactory for experimental bi-
ologists because they have been trained to
analyze natural systems, not idealized sys-
tems. “For those who expect an explanation
to identify particular causal loci, such an ac-
count [i.e., mathematical modeling] is «
priori unsatisfactory” (p. 102).

Experimental biologists in the era of mo-
lecular biology seek explanations for cellular
processes at the genetic level. There is phys-
icality to what causes something and a
mechanism that is identified in explanations
produced by experimental biologists. For ex-
ample, a particular gene in the genome of
an animal (e.g., the #lx gene), when ex-
pressed, is the mechanism that guides neu-
ronal cell migration in a particular area of
the brain (i.e., the limbic system) (see Mon-
aghan et al., 1997). In this example, there is
a specific physical event that occurs at the
molecular level that causes particular events
to occur at the cellular level, or in their ab-
sence, not to occur. From Keller’s perspec-
tive, these types of events characterize causal
explanations for developmental biologists (p.
102).

However, it is interesting that more ma-
ture sciences, such as physics, will admit in-
formation into their explanations (i.e., quan-
titative models) that many biologists view
with skepticism. Could it be that biology is
not yet ready for such an approach or is its
purview not amenable to mathematical
modeling? Keller concludes that experimen-
tal biology will eventually view mathematical
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modeling as a desirable approach to under-
standing animate life, but that there will
need to be clear benefits to experimentalists
for admitting such data into their explana-
tions (p. 112).

Behavior-Analytic Analogues

Behavior analysts have not yet focused on
a top-down approach to modeling behavior
processes, preferring instead to construct ex-
planations from experimentation. However,
even though most behavior analysts’ focus is
on direct experimentation, some individuals
have suggested that modeling may have a
place in this discipline. Early in Skinner’s ca-
reer (1938), he focused on a model to ex-
plain response probability in relation to re-
inforcement referred to as the reflex reserve.
Although not a mathematical model, the re-
flex reserve used mechanical metaphor to de-
scribe how response probability changed in
relation to reinforcement (Killeen, 1988).
Skinner abandoned the use of the reflex re-
serve in favor of describing functional rela-
tions, finding modeling not as useful as ex-
perimental analysis (Skinner, 1979). In this
case, he found the accumulation of data in
a new area of research to be more productive
than the development of an explanatory sys-
tem.

More recently, Killeen (1992, 1995) has
attempted to treat behavior—environment re-
lations from a perspective consistent with
theoretical physics. In this work, Killeen has
used quantitative modeling to predict and
describe behavioral functions that have yet
to be established in the laboratory (e.g.,
components of response strength). This ap-
proach uses mathematical models to develop
idealized systems that are integrative of cur-
rent findings and predictive of new func-
tional relations. Whether this approach to
making a priori predictions about behavioral
processes is productive remains to be seen.

Researchers in the experimental analysis
of behavior have been using quantitative
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modeling since the 1970s to integrate ex-
perimental findings and arrive at parsimo-
nious descriptions of existing data. This
work has been most active in the areas of
choice and behavioral momentum (see Fish-
er & Mazur, 1997; Nevin & Mace, 1994).
Unlike mathematical biologists, quantitative
modelers in these areas have looked to de-
velop equations that can be fit to extant
data. This differs substantially from the pro-
cess used by Rachevsky (1934) and Turing
(1952), who sought to model first and let
others test the adequacy of their theories.

An issue that has emerged from quanti-
tative modeling in the experimental analysis
of behavior is the relative adequacy of molar
versus molecular accounts of behavior—en-
vironment relations (Baum, 2002). The is-
sue is at what level behavioral data are most
productively interpreted—in large aggregates
or smaller units. In molar accounts of be-
havioral events, the goal is to characterize
them in averages of aggregate events over ex-
tended periods of time. In molecular ac-
counts, the focus is on moment-to-moment
contingencies between stimuli and respons-
es. An example of how these different ap-
proaches can be used to arrive at divergent
explanations of the same set of events is the
analysis of why variable-ratio (VR) reinforce-
ment schedules occasion higher response
rates than variable-interval (VI) reinforce-
ment schedules do.

VR schedules produce higher rates of re-
sponding than VI schedules, but this differ-
ence cannot be accounted for by reinforce-
ment rate alone because different response
rates can be generated even when reinforce-
ment rate is held constant (Catania, Mat-
thews, Silverman, & Yohalem, 1977). Mo-
lecular accounts of this phenomenon have
focused on moment-to-moment relations.
For example, interresponse time (IRT) re-
inforcement theory (Shimp, 1968) suggests
that the lower response rates on VI schedules
are due to the reinforcement of longer IRTs
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on these schedules relative to VR schedules,
on which brief IRTs are more likely to be
reinforced. Molar accounts, such as re-
sponse—reinforcer correlation theory, have
focused on the relation between average re-
sponse rate and overall reinforcement rate,
with VR schedules generating a linear rela-
tion between reinforcement rates and re-
sponse rates.

Either approach to explaining this behav-
ioral phenomenon appears to be adequate,
but the explanations are arrived at by taking
into account different processes at different
analytical levels. Molar accounts tend to
summarize large aggregates of behavior—en-
vironment interactions to arrive at conclu-
sions about data, whereas molecular ac-
counts tend to use discrete contingency
events as the focus of analysis. Behavior an-
alysts who focus on molar accounts of be-
havior tend to use quantitative models to de-
scribe and explain behavioral phenomena,
whereas molecular accounts often use visual
displays of data as an analytical approach. As
noted by Hineline (2001), both accounts
have certain benefits and may be viewed as
explanations for the same phenomena that
occur at different levels of scale. Which is
the preferable explanation may depend on
the particular question being posed.

Keller notes that with the advent of mo-
lecular biology and a focus on DNA as the
underlying mechanism in developmental bi-
ology, there may be a renewed interest in
mathematical biology as an adjunct to ex-
perimental biology (p. 108). For example,
after the regulatory genes involved in em-
bryogenesis have been identified and their
mechanisms explained, there may still be a
role for mathematical models (e.g., Turing,
1952) in explaining how multicellular struc-
tures develop into certain forms. Perhaps the
issue is whether experimental biologists will
ultimately find mathematical models useful
in arriving at explanations of actual biolog-
ical events rather than abstracted systems.
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Behavior analysis may, or may not, follow a
similar path.

CONCLUSION

A number of authors have noted that be-
havior analysis has its historical roots in bi-
ology (Boakes, 1984; Schneider, 2003;
Thompson, 1984). As this review has at-
tempted to show, although contemporary
behavior analysis and biology have little con-
tact with each other, there are strong simi-
larities in how these disciplines approach
their respective subject matter. Whether this
approach is required to study animate life or
is part of the process of nascent disciplines
building a systematic and replicable basis for
future growth remains to be seen. What is
clear is that behavior analysts are not alone
in their preference for experimental analysis
over armchair theorizing.

As scientists in the modern era, we gen-
erally proceed under the assumption
that phenomena, if they are natural, are
ipso facto explicable—obliged, as it
were to make sense to us. ... But by
what mandate is the world obliged to
make sense to us? Is such an assump-
tion even plausible? I would say no,
and on a priori grounds. One need in-
voke neither divine intervention nor
unknown forces. . .. The human mind
does not encompass the world; rather,
it is itself a part of that world, and no
amount of self-reflection provides es-
cape from that limitation. (p. 295)

Perhaps, when faced with complex biolog-
ical systems at the start of a new scientific
discipline, the best one can do is experiment
and find out how systems are structured and
function. This strategy worked well for bi-
ologists who began their research a century
before Pavlov, Thorndike, and Skinner. For-
going the development of a priori systems
and the overinterpretation of findings may,
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in the short term, seem intellectually con-
servative, but in the long run may be the
most efficient process for arriving at ade-
quate explanations of biological phenomena,
including human behavior. To paraphrase a
quote from Skinner that often appears in the
back pages of the Journal of the Experimental
Analysis of Behavior, “Regard no practice as
immutable. Change and be ready to change
again. Accept no eternal verity. Experiment.”

REFERENCES

Baum, W. M. (2002). From molecular to molar: A
paradigm shift in behavior analysis. Journal of the
Experimental Analysis of Behavior, 78, 95-116.

Bernstein, I. S. (2003). The study of things I have
never seen. American Journal of Primatology, 60,
77-84.

Biklen, D. (1990). Communication unbound: Au-
tism and praxis. Harvard Educational Review, 60,
291-314.

Bjork, D. W. (1993). B. E Skinner: A life. New York:
Basic Books.

Boakes, R. A. (1984). From Darwin to behaviorism:
Psychology and the minds of animals. Cambridge:
Cambridge University Press.

Catania, A. C., Matthews, T. J., Silverman, P. J., &
Yohalem, R. (1977). Yoked variable-ratio and
variable-interval responding in pigeons. Journal of
the Experimental Analysis of Bebavior, 28, 155—
162.

Chew, M. K., & Laubilcher, M. D. (2003). Natural
enemies: Metaphor or misconception? Science,
301, 52-53.

Cohen, M. R., & Nagel, E. (1962). An introduction
to logic (2nd ed.). Indianapolis, IN: Hackett.
Collins, E S., Green, E. D., Guttmacher, A. E., &
Guyer, M. S. (2003). A vision for the future of
genomics research: A blueprint for the genomic

era. Nature, 422, 835-847.

de Villis, J., & Carpenter, E. (1999). Development.
In G. J. Siegel, B. W. Agranoff, R. W. Albers, S.
K. Fisher, & M. D. Uhler (Eds.), Basic neurochem-
istry: Molecular, cellular, and medical aspects (6th
ed., pp. 537-564). New York: Lippincott, Wil-
liams, & Wilkins.

Estes, W. K., & Skinner, B. E. (1941). Some quan-
titative properties of anxiety. Journal of Experimen-
tal Psychology, 29, 390-400.

Fisher, W. W., & Mazur, J. E. (1997). Basic and ap-
plied research on choice responding. Journal of Ap-
plied Behavior Analysis, 30, 387—410.

Green, G., & Shane, H. C. (1994). Science, reason,
and facilitated communication. Journal of the As-

CRAIG H. KENNEDY

sociation for Persons with Severe Handicaps, 19,
151-172.

Hayles, N. K. (1996). Narratives of artificial life. In
G. Robertson, M. Mash, L. Tickner, J. Bird, B.
Curtis, & T. Putnam (Eds.), FutureNatural: Na-
ture, science, culture (pp. 146—164). London: Rou-
tledge.

Hineline, P. N. (1990). The origins of environment-
based psychological theory. Journal of the Experi-
mental Analysis of Behavior, 53, 305-320.

Hineline, . N. (2001). Beyond the molar—molecular
distinction: We need multiscaled analyses. Journal
of the Experimental Analysis of Behavior, 75, 342—
347.

Keller, E. E. (2002). Making sense of life: Explaining
biological development with models, metaphors, and
machines. Cambridge, MA: Harvard University
Press.

Kennedy, C. H. (in press). Single-case designs for ed-
ucational research. Boston: Allyn and Bacon.

Killeen, P R. (1988). The reflex reserve. Journal of
the Experimental Analysis of Bebavior, 50, 319—
331.

Killeen, P. R. (1992). Mechanics of the animate. Jour-
nal of the Experimental Analysis of Behavior, 57,
429-463.

Killeen, P R. (1995). Economics, ecologics, and me-
chanics: The dynamics of responding under con-
ditions of varying motivation. Journal of the Ex-
perimental Analysis of Behavior, 64, 405—431.

Knorr-Cetina, K. (1999). Epistemic cultures. Cam-
bridge, MA: Harvard University Press.

Lamarck, J.-B. (1984). Philosophical zoology: An ex-
position with regard to the natural history of ani-
mals. Chicago: University of Chicago Press. (Orig-
inal work published 1809)

Langton, C. G. (1997). Artificial life: An overview
(complex adaptive systems). Cambridge, MA: MIT
Press.

Leduc, S. (1912). Le biologie synthétique. Paris: A.
Poinat.

Loeb, J. (1964). The mechanistic conception of life.
Cambridge, MA: Harvard University Press. (Orig-
inal work published 1912)

Macfarlane, J. M. (1918). The causes and course of
organic evolution. New York: Macmillan.

Monaghan, A. P, Bock, D., Gass, ., Schwager, A,,
Wolfer, D. P, Lipp, H. P, et al. (1997). Defective
limbic system in mice lacking the zailless gene. Na-
ture, 390, 515-517.

Mulkay, M. J. (1991). Sociology of science: A sociolog-
ical pilgrimage. Bloomington: Indiana University
Press.

Nevin, J. A., & Mace, E C. (1994). The ABCs of
JEAB, September 1993. Journal of Applied Behav-
ior Analysis, 27, 561-565.

Porsolt, R. D. (1979). Animal model of depression.
Biomedicine, 30, 139-140.

Rashevsky, N. (1934). Physico-mathematical aspects



BOOK REVIEW

of cellular multiplication and development. Cold
Spring Harbor Symposia for Quantitative Biology,
2, 188-198.

Ray, T. S. (1998). Selecting naturally for differentia-
tion: Preliminary evolutionary results. Complexity,
3, 25-33.

Schellnhuber, H. J. (1999). “Earth system” analysis
and the second Copernican revolution. Nature,
402, C19-C23.

Schneider, S. M. (2003). Evolution, behavior prin-
ciples, and developmental systems: A review of
Gottlieb’s Synthesizing Nature-Nurture: Prenatal
Roots of Instinctive Bebavior. Journal of the Exper-
imental Analysis of Bebavior, 79, 137-152.

Shaw, P. J., Cirelli, C., Greenspan, R. ]J., & Tononi,
G. (2000). Correlates of sleep and waking in
Drosophila melanogaster. Science, 287, 1834—1837.

Shimp, C. P (1968). Magnitude and frequency of
reinforcement and frequencies of interresponse
times. Journal of the Experimental Analysis of Be-
havior, 11, 525-535.

Sidman, M. (1952). A note on functional relations
obtained from group data. Psychological Bulletin,
49, 263-269.

Sidman, M. (1960). Tactics of scientific research: Eval-
uating experimental data in psychology. New York:
Basic Books.

Skinner, B. F. (1938). The behavior of organisms: An
experimental analysis. New York: Appleton-Cen-
tury.

Skinner, B. E (1953). Science and human behavior.
New York: Macmillan.

553

Skinner, B. E (1974). About behaviorism. New York:
Vintage Books.

Skinner, B. E (1979). The shaping of a behaviorist.
New York: Random House.

Skolnick, P. (1999). Antidepressants for the new mil-
lennium. European Journal of Pharmacology, 375,
31-40.

Smith, L. D., & Woodward, W. R. (1996). B. E
Skinner and behaviorism in American culture. Beth-
lehem, PA: Lehigh University Press.

Thompson, T. (1984). The examining magistrate for
nature: A retrospective review of Claude Bernard’s
An Introduction to the Study of Experimental Med-
icine. Journal of the Experimental Analysis of Be-
havior, 41, 211-216.

Turing, A. M. (1952). The chemical basis of mor-
phogenesis. Philosophical Transactions of the Royal
Society, London, B, 237, 37-72.

Watson, J. D. (2003). DNA: The secret of life. New
York: Knopf.

Watson, J. D., & Crick, E H. C. (1953). A structure
for deoxyribose nucleic acid. Nature, 171, 737—
738.

Wilson, E. B. (1934). Mathematics of growth. Cold
Spring Harbor Symposia for Quantitative Biology,
2, 199-202.

Wolfram, S. (2002). Cellular automata and complexity.
Cambridge, UK: Perseus.

Received August 21, 2003
Final acceptance August 18, 2004
Action Editor, Patrick Friman



